Effects of protein binding on the biodistribution of PEGylated PLGA nanoparticles post oral administration.

نویسندگان

  • Boitumelo Semete
  • Laetitia Booysen
  • Lonji Kalombo
  • Bathabile Ramalapa
  • Rose Hayeshi
  • Hulda S Swai
چکیده

The surface of nanoparticles is often functionalised with polymeric surfactants, in order to increase systemic circulation time. This has been investigated mainly for intravenously administered nanoparticles. This study aims to elucidate the effect of surface coating with various concentrations of polymeric surfactants (PEG and Pluronics F127) on the in vitro protein binding as well as the tissue biodistribution, post oral administration, of PLGA nanoparticles. The in vitro protein binding varied depending on the polymeric surfactant used. However, in vivo, 1% PEG and 1% Pluronics F127 coated particles presented similar biodistribution profiles in various tissues over seven days. Furthermore, the percentage of PEG and Pluronics coated particles detected in plasma was higher than that of uncoated PLGA particles, indicating that systemic circulation time can also be increased with oral formulations. The difference in the in vitro protein binding as a result of the different poloxamers used versus similar in vivo profiles of these particles indicates that in vitro observations for nanoparticles cannot represent or be correlated to the in vivo behaviour of the nanoparticles. Our results therefore suggest that more studies have to be conducted for oral formulations to give a better understanding of the kinetics of the particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacokinetics and Biodistribution of Pegylated Methotrexate after IV Administration to Mice

The efficacy of methotrexate (MTX) as an antimetabolite chemotherapeutic agent highly depends on its blood circulation half-life. In our previous study, different conjugates of MTX (MTX-PEG) were synthesized, their physicochemical properties were investigated and MTX-PEG5000 was finally selected as optimum drug-conjugate for further investigations. In the current work, first the stability of MT...

متن کامل

Pharmacokinetics and Biodistribution of Pegylated Methotrexate after IV Administration to Mice

The efficacy of methotrexate (MTX) as an antimetabolite chemotherapeutic agent highly depends on its blood circulation half-life. In our previous study, different conjugates of MTX (MTX-PEG) were synthesized, their physicochemical properties were investigated and MTX-PEG5000 was finally selected as optimum drug-conjugate for further investigations. In the current work, first the stability of MT...

متن کامل

In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems.

UNLABELLED The remarkable physicochemical properties of particles in the nanometer range have been proven to address many challenges in the field of science. However, the possible toxic effects of these particles have raised some concerns. The aim of this article is to evaluate the effects of poly(lactide-co-glycolide) (PLGA) nanoparticles in vitro and in vivo compared to industrial nanoparticl...

متن کامل

Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile

Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug's pharmacokinetics related to the conventional formulation. Poly(lactide-co-glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United Sta...

متن کامل

Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content

Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties' effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 424 1-2  شماره 

صفحات  -

تاریخ انتشار 2012